TECHNICAL INTRODUCTION TO BIOMATERIALS Materiom

CHALLENGE

"extraordinary efforts to transform the global plastics economy are needed"

23 million53 millionmetric tons--->metric tons(2016)(2030)

plastic waste entering the oceans

Borelle et al., (2020), Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution

BIOECONOMY

Encompassing the **sustainable production of renewable resources** from land, fisheries and aquaculture environments and their conversion **into food**, **feed, fiber bio-based products and bio-energy** as well as the related public goods.

BIOECONOMY

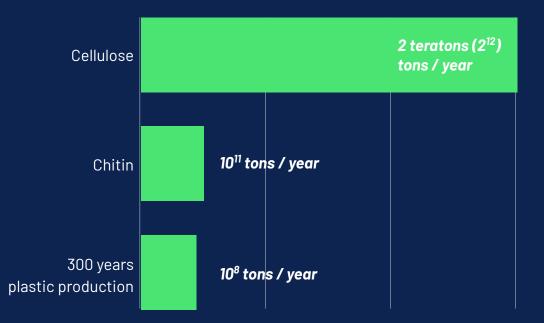
Encompassing the **sustainable production of renewable resources** from land, fisheries and aquaculture environments and their conversion **into food**, **feed, fiber bio-based products and bio-energy** as well as the related public goods.

Bio-based plastics

Fully or partially made from biological resources, rather than fossil raw materials. They are not necessarily compostable or biodegradable.

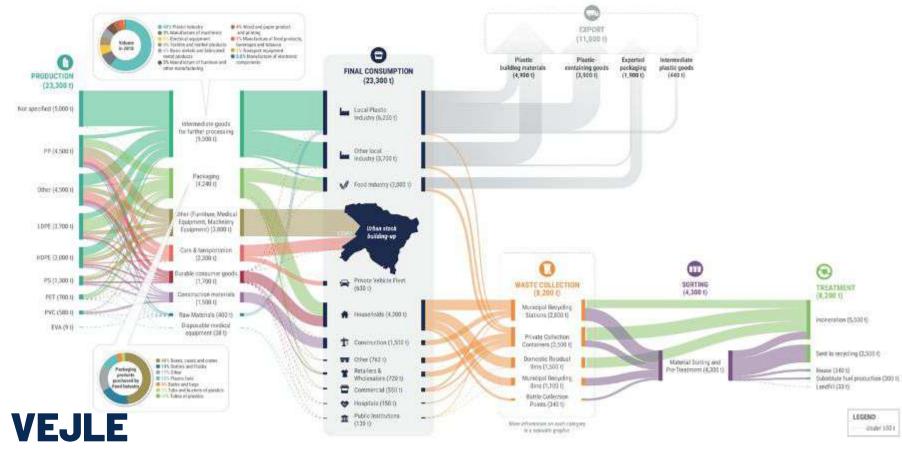
Biodegradable and compostable plastics

Biodegrade in certain conditions, and may be made from fossil-fuel based materials. They can contribute to reducing 'unavoidable' littering, but do not fully solve the littering problem.



OPPORTUNITY

Abundance of biopolymers building blocks per year


The amount of cellulose and chitin that is produced naturally every year in the environment is far more than 300 years of petrochemical plastic production.

What could be learned from our ecosystem?

CIRCULAR PLASTIC MFA

Material Flow Analysis of plastic production at Vejle, Metabolic at Reflow Project, 2020

VEJLE FOOD INDUSTRY

The waste flows from food industry in cities can be divided in these two groups.

Avoidable food waste

Edible

Unavoidable Food waste

Non-edible peels, seeds, etc

UNAVOIDABLE FOOD WASTE

Veile unavoidable food waste tons per year

Poultry Meat 641.80

Coffee & Products 584.53

Banana & Plantains 172.52

Potatoes & Products 145.66

Bovine Meat 105.56

Tea

85.29

Orange & Mandarines 54.93

Pineapples & Products 39.31

Lemon, Limes & Products 16.30

Apples & Products 9.04

Mutton & Goat Meat

Grapes & Products 7.19

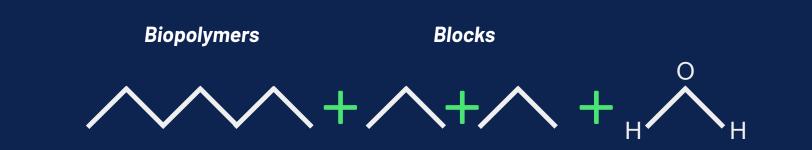
Grapefruit & Products 3.27

Dates

3.27

Crustaceans 0.46

Molluscs 0.11


UNAVOIDABLE FOOD WASTE

Biopolymer tons from unavoidable food waste per year

Unavoidable Waste	Tons	Biopolymers	Tons
Poultry Meat	641.80		96.27
Coffee & Products	584.53	Cellulose Hemicellulose	50.27 214.52
Bananas & Plantains	172.52	Cellulose Starch Pectin	20.70 25.88 0.43
Eggs	159.70 ———	→ Calcium Carbonate	151.71
Potatoes & Products	145.66	→ Starch	29.13
Bovine Meat	105.56	> Collagen (Gelatine)	6.33
Tea & Mate	85.29	> Cellulose	13.65
Pigmeat	71.48		4.29
Onions	55.65	Cellulose Hemicellulose	25.04 11.13

BIOPOLYMERS

Polymers of natural origin derived from renewable resources. These are composed of nature basic building blocks, into larger chains called biomolecules

Cellulose - Chitosan - Starch

Biomaterials

BIOPOLYMERS

Each biopolymers plays a key role in the composition of biomaterials

Structural Matrix

Biopolymer that agglomerates the material components

Reinforcing Material

Fibre or mineral that fills in the material, enhancing specific properties

Plasticizer

Biopolymer that enhances the flexibility and strength of the material Solvent

Dissolves the main components that promote chemical catalysis

Agar & Gelatin Bioplastic

Agar-Agar Seaweed Biopolymer

Gelatin Protein Biopolymer

+

Glycerine Vegetal or animal triol

Water

Authors: Maquinar.io

Structural Matrix

Reinforcing Material

Plasticiz<u>er</u>

Solvent

Agar & Gelatin Biocomposite

Agar-Agar Seaweed Biopolymer

+

Gelatin Protein Biopolymer Plant Fibers Cellulose OR Eggshell Calcium Carbonate

Glycerine Vegetal or animal triol

Water

Structural Matrix

Reinforcing Material

2222

Plasticiz<u>er</u>

Solvent

Eggshell & Alginate Biocomposite

Alginate

Seaweed Biopolymer

Eggshell Calcium Carbonate

Authors: Labva

Structural Matrix

Reinforcing Material

Plasticizer

Solvent

Other biopolymers

Water

CATEGORIZATION

Biomaterials can be categorized by several criteria depending their aim

Manufacturing techniques

Applications

Biopolymer

Properties & Characteris<u>tics</u>

Format

CATEGORIZATION

Manufacturing techniques

Crafted

Mixing ingredients in a solution adding heat and pouring in a mould to shape

Carrageenan Bioplastic Algae-based **Sawdust + Agar** Plant and algae-based

Grown

Growing live microorganisms in a suitable medium

Labva

Kombucha Bacteria-based **Mycelium** Fungus-based

CATEGORIZATION Application

Packaging

Algae Food packaging Margarita Talep

Printed kombucha packaging Labva

Textiles

Biothread Carolina Etchevers - Biomatrialista

Coffee Bag Fab Textiles

CATEGORIZATION Format

Sheets

Bioplastic sheets Youyang Song

Composites

Tea and coffee composites *Biohm + Caraca Collective*

Threads

Biothread Xenabeth Lázaro

CATEGORIZATION

Biopolymer

Cellulose-based

Coffee Husk composite Big Circle Studio + Zoe Powell

Collagen-based

Gelatin & Agar-based Sheet Maquinar.io

Chitin-based

Chitin-based cups The Shellwork

BIOMATERIALS BRANDS

NOTPLA

PIÑATEX

MOGU

Algae-based packaging

Pineapple-based textiles

Mycelium-based panels

BIOMATERIALS BRANDS

BOLT THREAD

CHIP[S] BOARD

TOMTEX

Mylo - Mycelium-based fabric

Starch-based boards

Chitin-based sheets

HOW TO MAKE BIOMATERIALS?

Ask yourself the right questions

APPROACH DIMENSIONS

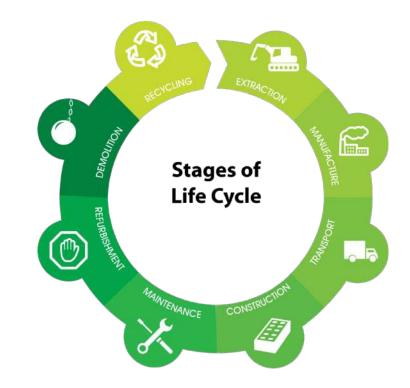
Biofabrication Methodology Biolab Austral **Reflective Dimension** Ethical-critical

Territorial Dimension *Physical context*

Social Dimension Key actors

Practical Dimension Equipment

Technical Dimension Data - Processes



Biomateria Austral project. Chile, 2021.

REFLECTIVE DIMENSION

Ethical Critical

Ethical principles of working with raw materials. It considers energy consumption, inter- and intraspecies relations, and the sustainability of biogeochemical cycles.

lrish Green Building Council LCA - www.igbc.ie

TERRITORIAL DIMENSION

Physical Context

Context associated with the development of the raw material. The intrinsic characteristics of the context are considered, from the type of environment to the structural scales of the site. Denmark Topographic Map Tschubby, CC BY-SA 3.0 Wikimedia Commons

SOCIAL DIMENSION

Key Actors

It considers all those people and organisations involved in the work with biomaterials.

PRACTICAL DIMENSION

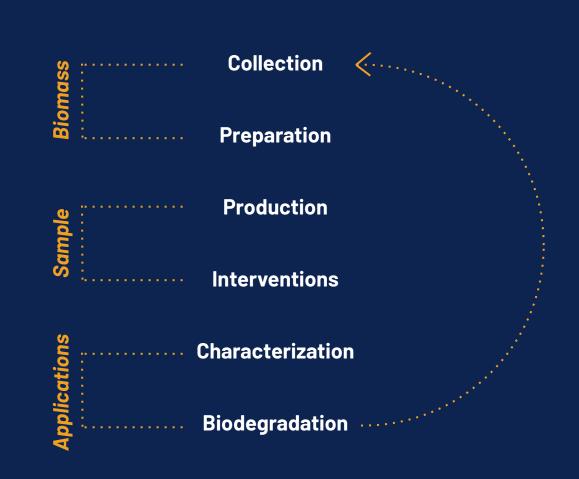
Equipment - Tools

Involves necessary artefacts or products such as equipment, machines, and tools.

TECHNICAL DIMENSION

Data - Processes

More specific knowledge about the raw material, as well as the methodology and processes used.



Start experimenting

ACTION INSTANCES

Biofabrication Methodology Biolab Austral

BIOMASS COLLECTION

Access to the source of the resource or ingredient

- What resources do I have locally in the environment or from organic waste?
- How to use them responsibly so as not to overload the ecosystem?
- Who already works locally with this resource? Could I collaborate with them?
- Which sourcing method I will use?
- What species am I working with? What biopolymers compose it?

BIOMASS PREPARATION

Extraction and classification of the raw material

- How to clean, dry and ground my material for later use?
- Work with already processed resources or extract them directly from the biomass?
- How to document my process and registre my exploration?
- What role does each element of my biomaterial play? Is it similar to its role in nature?

BIOMASS PREPARATION

Tips

Processing biomass	Kitchen equipment	Maker equipment
Dehydrating	Sun/ Oven at 35ºC with fan	Dehydrator at 35-40⁰
Grinding	Blender / mortar and pestle	Shredder
Sieve	Kitchen Sieve	Mesh sieve strainer
Storage	Jars	Airtight container
Labeling	Name, Biomass, Dates	Name, Biomass, Dates

SAMPLE Production

Biomaterial fabrication process

- What tools and machines do I need?
- How will I measure my ingredients to control changes and facilitate scanning?
- Which formats do I want to explore? Films, blocks, yarns?
- How will I dry my samples once they are ready?
- How will I categorise and label my samples? By biopolymer, application, format?

SAMPLE PRODUCTION

General Tips

Processing recipe	Kitchen equipment	Maker equipment
Cooking	Pot, kitchen stove, measuring cups, stirring spoon, kitchen thermometer	Container, hot plate, precision scale, silicone spatula, digital thermometer
Moulding	Silicon, Metal Containers	Laser cutted molds, thermoformed moulds
Dehydrating	Sun/ Oven at 35ºC with fan	Dehydrator at 35-40º
Labeling	Biopolymers, Time, Concentrations, Date	Biopolymers, Time, Concentrations, Date
Documenting	Lab book & Photos	Lab Book, Photos & Excel Sheet

SAMPLE PRODUCTION

Typical issues

Processing recipe

Kitchen equipment

Salt, Rosemary or Sage.

Avoid bubbles for material consistency

Avoid undesired bacterias and funguses

Clean equipment, cover samples with breathable cloth, not touch material until dry, use <u>preservatives such as</u>

Tap the solution before gelling in the

mold until eliminate the bubbles

Maker equipment

Use a vibration platform, heat gun or vacuum pump

Sterilise equipment, cover samples with breathable cloth, use dehydrator, not touch material until dry, use preservatives such as Sodium Benzoate, Calcium Peroxide or Calcium Propionate.

SAMPLE PRODUCTION

Other Tips

Processing recipe	Process
Thicker materials	Higher concentration of structural matrix/ binder biopolymer, more glycerin, or a reinforcement material like grinded fibers or particles.
Flexible and Stronger materials	Increase plasticizer, like glycerin. However, Too much glycerin can make the final material sticky.
Material Shrinkage	Reduce the solution as much as possible in the hotplate, use wood framework (silicone or acrylic top), increase glycerin or structural biopolymer.

Post-processing and finishing of the material.

- What tools and machines do I have to work on the samples?
- If I use digital fabrication, can I laser cut my material to make textures, assemblies, fold it or engrave it?
- Could I use traditional techniques such as sewing machines, scissors or stamping machines?
- Is it necessary to add a finish such as oil, wax or pigments? Are these other resources environmentally friendly?

Techniques

Processing material

Sheets

- Use flat moulds without fillers, just the structural biopolymers and glycerin.
- Depending on your recipe, it may react better with different mould materials, such as silicone, melamine, acrylic, metal, etc.

Composites

- Balance well the liquid solution with the filler. Too much liquid can result in materials with different thickness, and not enough can result in fillers that do not agglomerate.
- You can add pressure to avoid gaps between your fibers or particles.
- Drying may take longer than thinner biomaterials, therefore they may be more prone to bacteria and fungi.

Threads •

Process

- Use syringes o 3d printers.
- It is recommended to create materials based on sodium alginate and pour in calcium solution.

Digital Fabrication

Vector Cutting & Engraving

Half-Vector Cutting

For flexibility and textures

For folding and origami

Vector Cutting & Modules

For modules and joints

Printing Solutions

Dummo Lab +Tufftuhiversity

Printing Composites

Printing Moulds

Digital Fabrication

Machining Composites

Machining Molds

Other techniques

Foaming

Press Heating

Textured Molds

Other techniques

Silkscreen Printing

Ink printing

Sewing

CHARACTERIZATION

Defining applications according to technical-sensory test

- What are the aesthetic and sensorial characteristics of my material?
- What physical and chemical properties does my material have? How can I test this?
- For which applications are these characteristics and properties useful?
- Can I enhance certain properties by changing the ingredients, their concentrations or the format of my material?

SAMPLE CHARACTERIZATION

Physical characterization


Colour, Opacity, Weight, Size, Density, etc

Mechanical characterization

Hardness, Tensile testing, Toughness, Compression, etc

Chemical characterization

Ecotoxicology, Biodegradability, etc

Ashby diagram Materiom

BIODEGRADATION

Reincorporation into the ecosystem at the end of life-cycle

- Is it possible to continue using my biomaterial? Should I replace certain elements?
- Is it possible to recycle and re-cook my biomaterial?
- In which medium do I want to biodegrade my sample? Water, compost?
- What concentrations of this material are suitable for the ecosystem?
- Could the biodegradation of my material have a use such as nutrient delivery?

Share your recipe at www.materiom.org !

Keep researching

MORE RESOURCES

Review our <u>masterclass</u>! Materiom.org Reflowproject.eu Ellenmacarthurfoundation.org Asknature.org Biomimicry.org Biomimicry.net Gbif.org lom3.org

Materialconnexion.com Materialinnovation.org Material-exchange.com Materialdistrict.com Healthymaterialslab.org Fabtextiles.org Futurematerialsbank.com Openmaterials.org Instructables.com

Thank you!

